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John. T. Bendler*, John. J. Fontaneila**, Michael. F. Shlesinger# 

Department of Chemistry and Chemical Engineering, South Dakota School of 
Mines and Technology, Rapid City, SD 57701 
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ABSTRACT 

The relaxation time scale in glassy materials is derived within a model of anomalous 

defect diffusion. The effect of the defects on ion-doped polymeric glasses is to produce a 

stretched exponential waiting time distribution for ion jumps. The characteristic time scale for 

ion jumps is connected the temperature and pressure dependent concentration of mobile defects. 

The resultant expression for ionic conductivity is compared with experimental results for the 

polymer electrolytes poly(ethylene glycol) (PEG) and polypropylene glycol) (PPG) containing 

ÜCF3SO3. 

I. INTRODUCTION 

In 1889, Arrhenius introduced the concept of an activation energy together with a law for 

the related characteristic relaxation time rA = v~l exp(A/kT) where k is Boltzmann's constant 

and T is the absolute temperature in degrees Kelvin. The Arrhenius law was later derived by 

Kramers in terms of the trajectory of a particle successfully crossing an energy barrier of height, 

A, with an attempt frequency of v0.   However the Arrhenius law is typically not valid for most 

glass-forming materials.   A corresponding law for these materials was proposed by Vogel   in 

1921, for viscosity r\ in the form 7](T) = 7]   (T~'\)'V ~'X>  ).   Vogel used this empirical fit 
cc 



for viscosity experiments on mercury, water, and oils.   In terms of a time scale VogePs law can 

be written equivalently and more transparently as, 

TV = Av exp '_0 (1) 

This later form was proposed by Fulcher2 in 1925, and Tammann and Hesse3 in 1926. Today 

this is called the Vogel law or the VFT law or some other combination of the above. The 

interpretation of the parameters A v, B v and T0 is not so straightforward. First, one notices that 

T0 is a special temperature where the time scale diverges. The temperature T0 is typically well 

below 7\, the glass transition temperature of the material, i.e., the relaxation dynamics are 

focused on T0 and not on Tg.   There have been several attempts to derive the Vogel law or 

alternative laws. Previously, we had derived the equation for the temperature dependence of the 

relaxation time at zero pressure " : 

TUD   ~ ^DD eXP 
BDD (2) 

J jj-Ter 

where ADD,BDDand. Tc are constants. The derivation of eq. (2) starts by initially arriving at a 

stretched exponential relaxation time distribution within a defect diffusion model. The 

relaxation time scale is the mean time of the stretched exponential law. This time scale depends 

on the (temperature and pressure dependent) mobile defect concentration. In this model, the 

defects carry free volume and can unfreeze the parts of the glass that they visit. With enough 

defects the glass is not frozen. As the temperature is lowered, defects cluster, and the number of 

mobile defects decreases. As this occurs, the material becomes more viscous (rigidity begins to 

set in).  At 7\, the defect concentration decreases to the point where rigidity percolates, and the 

glassy state is formed. Relaxation, however, is still occurring.   A phase transition in the number 



of mobile defects, as the temperature is lowered towards Tc, creates the behavior characterized 

by eq. (2). 

Equation (2) has consistently been as good as or better than the Vogel law (eq. 1) for 

7 Q 
fitting ionic conductivity, dielectric relaxation and viscosity data for glass-forming materials ' . 

The Vogel law often fails to fit data adequately near Tg and an Arrhenius law is sometimes used 

near T , in conjunction with a Vogel law in the region above Tg.   Equation (2) provides a 

consistently better fit throughout both regions. 

In this paper we have extended eq. (2) to include the effect of pressure.    It will be 

demonstrated that the resultant generalized Vogel-type law, eq. (6), successfully describes 

measurements of ionic conductivity in salt-containing, glass-forming liquids, such as those 

frequently used as the electrolyte in a battery. 

II.        THEORY 

Consider a glass-forming material possessing a concentration c of defects, where c,„ of 

these are mobile. Ion hopping motion at an ion occupied site occurs, at time t, due to the flux of 

defects, F(t), into that site. To calculate F(t) we employ a waiting time probability density, y/(t), 

for holding a defect for a time /, in between its jumps. This incorporates a randomness into the 

defect motion. The relaxation function </>(() is given by (p{t) = exp(-F(/)). The defect flux into 

a site, within a time t, is cnlN(t) where N(t) is the number of distinct sites a random walking 

defect visits within a time t. The relaxation law is " , 

4>{t)=w(-cmNi!)). (3) 

For a typical Brownian motion type random walk, N(t) is proportional to / and exponential 

relaxation occurs. Slower than exponential relaxation, i.e. stretched exponential relaxation is 

another possible relaxation law, i.e. 



^=exp(-^m^exp(-[//zf) (4) 

where ß < 1 and Ä is a constant and on the RHS r = {Acm)~uß = cm'
ußr0. This is the typical 

behavior exhibited by glassy materials. There are several ways in which one can arrive at eq. 

(4). If one relates a time scale to overcoming a free energy barrier as follows: 

t = t0exp(-(A-TS)/kT) then the distributions of energy barriers, A, entropies, S, and 

prefactors, to, can each generate a distribution y/(f) of waiting times between jumps. Consider 

first that only S is a random variable and the distribution of environments produces is 

f(S) = S~]Qxp(-S/S0). Then y/{t)dt = f(S)dS leads at long times to ^«l/f'^with 

ß = klS0.   When S<S0, ß < 1.   For this case, for a single defect, the mean waiting time 

CO 

between jumps,   \ty/{t)it, is infinite. If, instead, one places all the randomness in the energy 
u 

term a similar stretched exponential decay arises, but with the exponent being temperature 

dependent. In general, both mechanisms can be expected. 

Since only the defects are mobile in the model, as the temperature is lowered, the defects 

cluster (or correlate their motion) to lower the system entropy. We now make the assumption 

that single defects, of concentration c,, are more mobile than a cluster of defects. We therefore 

replace cm in eq. (4) by ct. To have a single (isolated) defect at a site, one must first have a 

defect there with probability c and also have all of the z neighbor sites within its correlation 

volume unoccupied, i.e. 

c,=c(l-c)* (5) 

with z = (^/d)\ where £ is the defect-defect correlation length, and d is the nearest-neighbor 

lattice spacing.  In a mean field lattice gas model, the correlation length £ between the defects 



grows near and above a critical temperature Tc as £(7j « L 
r   T   V'2 

T-T 
where L is a constant and 

c J 

Tc is the temperature at which single defects disappear and below which only defect clusters 

exist. With increasing pressure, the nearest-neighbor spacing d is assumed to decrease 

isotropically as d3 =d0\\-S(T,P)) where 1 -S(T,P) = V(T,P)/V(T,0) is the fractional 

volume change of the material as pressure increases and d0 is the mean lattice spacing separation 

at zero pressure.   The time scale in the stretched exponential can now be expressed as, 

!■'/». 
-Vfl. 

T»C[""T0 =c ""r0exp 
BT. 3/2 

(T-Tc.y
i2(]-S(T,P)) 

(6) 

where B = -(Ld0f \n(l-cj $.  This represents a new relaxation law that is Vogel-like, but with a 

3/2 temperature exponent and the inclusion of pressure effects. Note that Tc is a function of P. 

In an ion-containing polymeric glass-forming material, as described by our model, ion 

transport is controlled by the defects and it is assumed that the relaxation times for ionic 

conductivity are the same as those for dielectric relaxation.     Consequently,  a model of 

conductivity can be developed as follows.  Although an individual defect has an infinite waiting 

time between jumps, the ion, hit by a flux of defects, has the stretched exponential waiting time 

distribution.  All the temporal moments of the stretched exponential are finite, including the first 

I2 

moment which we label as ii. Since, the diffusion constant is of the formZ) = , employing 
or, 

the Nernst-Einstein relation o 
cf'nD 

kT 
where q is the charge on an ion and n is the ion 

concentration 

a(T,P) = 
**.iij'ß q~nl"c 
6kTrn 

-exp 
-BT;' 

{T-Tj\\-8). 
(7) 



Basically, as the pressure is increased, defects are pushed closer together and become more 

clustered leaving fewer single (mobile) defects. This will decrease the defect flux, increasing the 

time scale x, and thus decreasing the conductivity o. 

An   equation   for   the   viscosity,   r\,   follows   by   applying   the    Stokes-Einstein 

kT 
equation rj = , where r0 is the effective ion radius. 

67tDr0 

III. COMPARISON WITH EXPERIMENT 

For the purpose of comparing the theory of the ionic conductivity with experiment, eq. 

(7) is written as follows: 

a(T,P,) = -—exp 
T(\-S) 

( BTy. 

V 
(8) 

(T-Tcf'2(\-S) 

where Aa and B are constants. The ö'm the denominator of the pre-exponential accounts for the 

increase in ion concentration as pressure increases. Other terms in the pre-exponential may be 

pressure dependent but are taken to be constant in the present paper. It is assumed that the 

volume of the material changes with pressure according to: 

\S = \-X(T)P + f(T)P2+g(T)P3. (9) 

This form is chosen as it is supported by the PVT data of Zoller and Walsh.10 Finally, the 

critical temperature is assumed to be pressure dependent. 

To summarize the results for ionic conductivity vs. pressure, the theoretical values for In a 

vs. pressure at three temperatures were calculated using eq. (8). The experimental values were 

calculated using eq. (12).   The theoretical and experimental values are shown in Fig. 1.   The 



Figure shows good agreement between theory and experiment. The investigation of the first and 

second pressure derivatives of the conductivity will be reported elsewhere. 

IV. CONCLUSIONS 

A defect diffusion model has been developed that is capable of describing the 

temperature and pressure variation of several dynamical processes in glass-forming materials. 

The basic principle of the model is that electrical relaxation or ionic conduction occurs when a 

defect encounters a dipole or ion. Each of the parameters in the theory has a clear, physical 

interpretation. There is an underlying temperature that represents the temperature below which 

no defects are mobile. There is a dimensionless constant in the exponent that depends upon the 

correlation length, separation and concentration of the defects. For dielectric relaxation, the pre- 

exponential is a product of a characteristic relaxation time (taken to be about that for a lattice 

vibration) and the defect concentration. The pre-exponentials for ionic conduction and viscosity 

contain the expected additional terms. Comparison of theory and experiment reveal an excellent 

representation of the data over a wide range of temperatures and pressures. 
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FIGURE CAPTIONS 

Figure  1.  Electrical  conductivity vs.  pressure for PEG:LiCF3S03  and PPG:LiCF3S03 vs. 
temperature. The points are experimental and the lines are theoretical. 
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